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The one -dimensional problem of the propagation of sound in a two-component mixture is solved. An expression
is obtained for the speed of sound under condirions of chemical equilibrium. The results for the dissociation of
hydrogen are compared with similar results in [11.

In problems of gas dynamics the velocity of sound is usually calculated from the formula ¢ =V yp/p, where
Y = cp/cV is the ratio of the specific heat capacities at a given temperature. However, if sound travels in a mixture of
gases, this formula will be valid only for a nonreacting mixture, When the composition of the mixture changes as a
consequence of chemical reaction, and the specific heat capacities do not remain constant, the coefficient y will have
some other significance.

An expression for the speed of sound is derived below directly from the solution of the equations describing the pro-
pagation of small perturbations in a reacting medium. The mixture is assumed to be a two-component one. Its state is
characterized by the temperature T, the mass density of the mixture p = py + p,, and the mass concentrations C; =
= py/p, Cy = py/p; since Cy + G, =1, then one of the concentrations, C;, for example, will be independent in the

‘chemical reaction process; we shall denote it by C. Assuming that the flow is one-dimensional and employing, as usual
in the theory of sound, the adiabatic approximation, i,e,, neglecting viscosity, diffusion and thermal conduction, we
write the equations characterizing the behavior of the mixture,

The continuity equation for a particular component in the presence of a chemical reaction will be
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Here v is the mean flow velocity of the mixture, and m is the mass rate of the chemical reaction, which depends on
concentration and temperature. In the case in question, in the presence of a reversible stoichiometric equilibrium reac-
tion [2], we can write:
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where M is the mass of a molecule of the first component, v; and v{ are stoichiometric numbers, y; and y, are the mole-
cular weights of the components, and k{ and ky, are the rate constants of the forward and reverse reactions, depending
exponentially on activation energy (Arrhenius’ hypothesis):
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It is assumed that the excitation times of the forward and reverse reactions are the same, and therefore the steric
factor k is the same for ky and ky,. We note at once that m =0 will be the condition of chemical equilibrium.

The continuity equation and the momentum equation for the mixture have the form
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The condition of conservation of energy in the presence of a chemical reacrion has the form
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where cp is the specific heat capacity of the mixture, and p is the pressure, equal to the sum of the partial pressures.

For the quantity of heat Q in Eq. (5) we have
T
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Here r is the specific heat of reaction and the second term is conditioned by the temperature dependence of the heat

capacities,

Finally, in order to close the system, it is necessary to add the equation of state of the mixture, obtained by summa-
tion of the equations of state for the individual components (R is the gas constant of the mixture):
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We linearize the system of equations (1), (4)-(6) in the following manner. We represent all the paramerers of the
mixture in the form of a sum of the undisturbed part — denoted by the subscript 0 — and rhe perturbation — denoted hy
a prime, The undisturbed parameters relate to the state of chemical equilibrium, so that the condition m =0 is fulfilled,
while the following limitations are impoesed on the perturbations: their squares and products may be neglected, perturba-
tions of dependent quantities are obtained as the linear part of the expenaion of these quantities at the point of chemical
equilibriums:
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If only the speed of sound is to be determined, and not the entire mechanism of sound wave propagation, then the
undisturbed mixture may be assumed to be at rest, vo =0 and v’ = v.

Substituting (7) in the system of equations (1), (4)-(5), and discarding terms containing only undisturbed quantities,
since they satisfy these equations, we obtain for the perturbations the system of linear differential equations
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the solution of which is soughtin the form:
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where X is the wavelength, w is the absorption coefficient , v is the frequency, £{p» &, etc., denote dimensionless
wave amplitudes; and py, Cp» €tc., are associated with the condition m = 0.

For the rate of propagation of the perturbations we have, from the known formula,
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Substituting (9) in {8), we obrain a homogeneous system of linear algebraic equations for the amplitudes & ., £ .,
etc. Its solution will be nontrivial if the determinant of its coefficients is zero. From this condition, after expansion of
the determinant, we find the relation between a and the frequency w:
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By separating the real part of Eq. (11), we can find from (10) the speed of sound ¢ as a function of w. The formulas
for ¢ will be simplest in two limiting cases: 1) The system follows the oscillations of the wave without inertia, so that
chemical equilibrium is established all the time, and, 2) the system can not keep up with changes in the wave, In
the first case the relaxation time T is small compared with w -1 1t was shown in [2] that for a mixture of gases react-
ing stoichiometrically the relation between the relaxation time and the derivative of the reaction rate with respect to

concentration is T _(am/dC)'1
Then the condition 7 < w™ implies that w < dm/dC. It can be shown that in this case w will also be small com-

pared with dm/dp and 9m/0T. Expanding with respect to the small parameter w (dm/3C)~! the expression for a from
(11), we obtain, by confining ourselves to first-order terms, for the speed of sound at small values of w:
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In the second limiting case the system can be considered "frozen” at ¢ = ¢y, p = pgand T =T,. In this case,
T >w™ and w > 8m/3C, and expansion with respect to the small parameter w™ and w > 8m/3C for the speed of sound,
denoted in this case by coo gives
Cpe O
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The real value of the speed of sound, calculated from (11) for a completely defined w, lies between the values ¢y
and cy. It can be seen from the results just given that the formula ¢ = Yypjp, in which cp and cy are taken for py
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and T is suitable for calculating the speed of sound in the mixture only if it is in the "frozen” state, when its com -
position remains unchanged. [lence, the rate of transmission of very high frequency waves is almost unaffected by the
presence of a reaction in the gas mixture. Formula (12) is also suitable for calculating rhe velocity of long waves; for
this calculation it is necessary to know from the chemical kinetics thé actual relation berween the reaction rate m and
C, p, and T, :

We shall apply the result obtained to a dissociation reaction of the type X, & 2X —r, where r (taken with the minus
sign) denotes the heat absorbed in the process of dissociation of unit mass of gas, i. €., this is nothing other than the heat
of formation of X from the clements of Xy on the assumption that the heat of formarion of X, is equal to zero. Using ex-
pressions (2) and (3), written for dissociation, we obtain for the derivatives ar the cquilibrium point:

om Mk, 1 —Co? om My, .
G0 T T PTG, Gpo — T (1 —Co® (14)
am Mk, r

W:‘Fpo ‘W(i —(j())2 .

Substitution in Eq. (12) gives
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Introducing the true isentropic exponent for dissociarion yp = C%po/po . where cf is calculated from formula (18)
we see that it does not coincide with the ratio Cp/CV' .

Using formula (15) to calculate the dissociarion of hydrogen (chemical kinetics data taken from the handbook [31),
we obtain, for example, for

T=3000K, p=0.010 abs atm , Tp=1123, c¢,/c,=1.264;
T=3000°K, p=0,500 abs atm , Yp=1120, ¢, /c, =1.206;
T=2200°K, p= 0.010 abs atm , Yp=1123, ¢ /e, =1.184.

For these same values of temperature and pressure, the corresponding values of yy and CP/CV obtained in [1] (by
means of a purely thermodynamic calculation) are, respectively:

Yp=1.117, 1122, 1417 ¢, /c,=1.260, 1.180, 1.162.
The agreement may be considered satisfactory.
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